Object Detection

YOLO

YOLO(You Only Look Once) one stage algorithm. This blog will introduce four edition of YOLO network.

YOLO v1

A single convolutional network simultaneously predicts multiple bounding boxes and class probabilities for those boxes.

优点:
  1. extremely fast;
  2. reasons globally about the image when making predictions.
  3. learns generalizable representations of objects.(egs: train with natural images and test with art-work)
缺点:
  1. one grid only generate 2 bounding box for a single class, leading to negative to small object
  2. small error on small bbox has a great effect on IOU.
结构:
trick on training
experiment methods

YOLO9000: YOLO v2

优化
实验

image-20200610141132099

This is a experiment record picture with variance and mAP results. It is Impresive. But we can see that anchor-boxes is ignored in formal YOLOv2. Weird.

YOLOv3

most of methods have been put in yolov2, yolov3 is more stronger and caters to bussiness.

进步
code

YOLOv4

published in 2020 without Redmon, but improve a lot

要点

SSD

Single Shot MultiBox Detector

要点
训练

MultiBox: focus on generating class-agnostic bounding boxes in regression method. Loss-function: $F_{match}(x,l)$ is a L2 Loss and $F_{conf}(x,c)$ is a Binary Entropy Loss. And $x_{ij}$means i-th prediction matches to j-th true object. $F(x,l,c)=\alpha F_{match}(x,l) + F_{conf}(x,c)$ especially, $\alpha$ set to 0.3

实验

Heatmap

以Center-Net为例

该模型对于输入图像首先进行了预处理,包括图像仿射变换、大小调整等。对于训练数据,对原始图像进行预处 理的同时,需要对标注的检测框应用高斯模糊算法得到种类热度图,在训练过程中,以 多种不同的中枢网络(主要包括沙漏网络 (Stacked Hourglass Net)、ResNet、DCN网络等)为基础,适用于不同的目标检测任务,如人体姿态检测、3D 检测与平面检测 等。训练过程中,分别计算热度图的损失函数、长宽损失函数、偏移值损失函数和总损 失函数,用以网络训练的收敛与优化。

对于测试数据,经过预处理并加入到检测网络得到热度图等信息之后,需要进行解 码与处理。处理的过程主要是针对热度图应用 NMS算法,和中心池化 (Center Pooling) 与瀑布池化 (Cascade Corner Pooling) 两种池化操作。NMS算法为诸多目标检测网络公 用的去除冗余检测框的方法,在此不再赘述。中心池化和瀑布池化是从 Corner Net网络提出的边缘池化的改进版,在 Corner Net 中,边缘池化的作用是通过与贝叶斯公式类似的先验概率验证方式,通过既有概率来推断边界框中的四个端点。边缘池化共分为上、 下、左、右四个方向池化,以上-左池化为例,上池化操作从下至上搜索最大值,选取扫 描过程中已经遇到的最大值与当前值中的最大值写入当前值,左池化操作为从右至左, 扫描过程相同。得到上池化与左池化后的特征图后,将两个特征图按元素相加,得到的新的特征图用于预测热度图以及偏移等任务。

image-20200904162724624